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(57) ABSTRACT

Provided is a processor with a multi-pipeline fetch structure
or a multi-cycle cache structure, including: an integer core
which reads instruction transmitted from a lower block,
executes an operation corresponding to the instruction, and
transmits an instruction address to the lower block; an
instruction buffer which stores instruction data which are
requested by the integer core by using the instruction
address and transmits the instruction data in response to the
request of the integer core; and an instruction cache which
stores a portion of data of a program memory and transmit
the data to the instruction buffer in response to the request
of the instruction buffer.

8 Claims, 7 Drawing Sheets
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PIPELINED PROCESSOR

CROSS REFERENCES TO RELATED
APPLICATIONS

This application claims priority to Korean Patent Appli-
cation No. 10-2013-0024970, filed in the Korean Patent
Office on Mar. 8, 2013, the entire contents of which are
incorporated herein by reference.

FIELD

The present invention relates to a pipelined architecture
processor, and more particularly, a processor with a multi-
pipeline fetch structure or a multi-cycle cache structure.

BACKGROUND

A pipelined architecture is an architecture for design of a
computer system of performing parallel processes. In this
design architecture, one processor is divided into several
sub-processors having different functions, which are simul-
taneously performed to process different data. In general, in
a computer, instructions are processed through five stages of
fetching, analyzing, content-fetching, executing, and storing
stages, and thus, the instructions are processed by the
computer processor in the input order thereof step by step.
However, in the pipelined architecture, since the instructions
can be processed in parallel, the processing rate can be
increased.

In the pipelined architecture, a time taken for completing
five stages with respect to one instruction is defined by an
instruction cycle; and a time taken at each stage is defined
by a pipeline cycle. If the pipeline cycle is maintained
constant, the five stages can be operated synchronously, so
that it is possible to easily control the computer system. In
order to design the pipelined architecture so that the pipeline
cycles are equal, the stage having the longest time is set as
a reference stage. In the case where the pipeline cycles are
not constant, buffers are installed between the stages so that
the stages continue to be operated asynchronously.

In some cases, the pipelined architecture may be divided
into instruction pipelines and arithmetic pipelines. The
instruction pipeline denotes a stage where instructions are
moved through the processor. In the stage of the instruction
pipeline, fetching, buffer storing, and execution are
included. The arithmetic pipeline denotes a portion of cal-
culation arithmetic which can be divided and overlappedly
executed. On the other hand, according to a memory stage
system, the pipeline architecture may be adapted to a
memory controller which moves data to several locations.

SUMMARY

The present invention is to provide a processor with a
pipeline structure including an instruction buffer for increas-
ing efficiency of a multi-cycle cache in the processor.

The present invention is also to provide a method of
controlling an instruction buffer for increasing efficiency of
a multi-cycle cache.

The present invention is not limited to the above-de-
scribed objects, but the other objects may be clearly under-
stood from the following description by the ordinarily
skilled in the art.

According to an aspect of the present invention, there is
provided a processor with a multi-pipeline fetch structure or
a multi-cycle cache structure, including: an integer core
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which reads instruction transmitted from a lower block,
executes an operation corresponding to the instruction, and
transmits an instruction address to the lower block; an
instruction buffer which stores instruction data which are
requested by the integer core by using the instruction
address and transmits the instruction data in response to the
request of the integer core; and an instruction cache which
stores a portion of data of a program memory and transmit
the data to the instruction buffer in response to the request
of the instruction buffer.

In the above aspect, the processor may further include an
instruction bus interface unit which changes an internal
interface into a bus interface in order to directly access the
program memory.

In addition, the processor may employ a prefetching
method of filling the instruction buffer with data in advance
before the requesting of the integer core.

In addition, the processor may check an empty area of the
instruction buffer and use a prefetching method to fill the
empty area.

In addition, when areas of the instruction buffer which can
be sequentially accessed with reference to a currently-
accessed area are defined by sliding windows, the processor
may use the prefetching method where the sliding windows
are designated and the checking is performed.

According to the present invention, in a processor with a
multi-pipeline fetch structure or a multi-cycle cache struc-
ture, an instruction buffer is additionally installed between
an integer core and an instruction cache, so that it is possible
to improve performance of the processor.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features and advantages of the
present invention will become more apparent by describing
in detail exemplary embodiments thereof with reference to
the attached drawings in which:

FIG. 1 is a diagram illustrating a pipeline structure of a
processor;

FIG. 2 is a diagram illustrating a pipeline structure with
a multi-pipelined architecture;

FIG. 3 is a diagram illustrating a pipeline structure with
a multi-cycle architecture;

FIG. 4 is a diagram illustrating an instruction processing
scheme in a pipelined processor;

FIG. 5 is a diagram illustrating an instruction processing
scheme in a multi-pipelined architecture processor;

FIG. 6 is a diagram illustrating an instruction processing
scheme in a multi-cycle architecture processor;

FIG. 7 is a block diagram illustrating a structure of a
processor according to an embodiment of the present inven-
tion;

FIG. 8 is a block diagram illustrating a structure of a
processor according to another embodiment of the present
invention;

FIG. 9 is a diagram illustrating prefetching of an instruc-
tion buffer according to an embodiment of the present
invention; and

FIG. 10 is a flowchart illustrating a method of controlling
an instruction buffer according to an embodiment of the
present invention.

DETAILED DESCRIPTION

Hereinafter, embodiments of the present invention will
now be described more fully with reference to the accom-
panying drawings. First, it should be noted that, among
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figures in the drawings, the same reference numerals denote
the same elements although the clements are differently
illustrated. In addition, when it is determined that the
invention may become unclear due to detailed description of
well-know configurations or functions, the detailed descrip-
tion may be omitted. In addition, in the overall description,
“some portion includes some components” denote that some
portion may further include other components if there is no
contrary description, but it does not denote that other com-
ponents are excluded.

In general, in order to increase a rate of a processor, the
processor is embodied with a pipeline structure.

FIG. 1 is a diagram illustrating a pipeline structure of a
processor. FIG. 1 illustrates a general five-stage pipeline
structure.

Referring to FIG. 1, a pipelined processor is configured to
include a fetch stage 110, a decode stage 120, an execute
stage 130, a memory stage 140, and a write-back stage 150.

The fetch stage 110 is an instruction fetch (IF) stage which
access an instruction memory to fetch an instruction. The
most basic configuration of the fetch stage 110 is to directly
fetch the instruction from the instruction memory.

Generally, in the case where the operation rate of the
instruction memory is lower than the operation rate of the
processor, an instruction cache is additionally installed out-
side an integer core. Therefore, the fetch stage 110 first
searches the instruction cache to fetch the instruction. If the
instruction does not exist in the instruction cache, the fetch
stage 110 accesses the instruction memory to fetch the
instruction.

The decode stage 120 is an instruction decode (ID) stage
which analyzes the instruction fetched by the fetch stage
110, generates control signals necessary for datapath com-
ponents of the pipeline according to the instruction analysis,
and fetches necessary operands.

In the decode stage 120, overall control is performed; and
an operation of conversion into a control state machine, an
operation of branch, and the like are performed.

In the decode stage 120, in the case of an operand process,
inter-data dependency and hardware dependency are
checked. If the dependency is inevitable, a bubble stage is
generated. If the dependency is evitable, an operation of
solving the dependency problem by using forwarding is
performed.

In the execute stage 130, most arithmetic operations of the
processor are performed (ALU), and an operation of gen-
erating data access addresses is performed.

In the memory stage 140, the processor accesses the data
memory to perform operations READ/WRITE of reading
and writing data.

In the case where the data memory rate is low, in general,
since a data cache is additionally installed outside the integer
core. Therefore, in the memory stage 140, the data cache is
first searched to read and write data. If the data do not exist
in the data cache, the processor accesses the data memory to
read and write the data.

In the write-back stage 150, internal registers of the
processor are updated with new data which are acquired as
a result of the arithmetic operations or through the memory
access.

FIG. 4 is a diagram illustrating an instruction processing
scheme in a pipelined processor.

Referring to FIG. 4, it can be seen that, as an effect of the
pipeline, one instruction is processed in one cycle in an area
410.
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Referring to FIG. 1, the process is configured in a pipeline
manner in order to increase a speed of the processor. In FIG.
1, a five-stage pipelined processor is illustrated.

In this case, the operating rate of the processor depends on
a pipeline having the lowest operating rate among the
pipelines.

In FIG. 1, the arrow of the flows Timel— . . . —=Time4
indicates that the manufacturing level of the processor is
lowered in this order. As the manufacturing level of the
processor is lowered, the change in the operating rate of the
pipeline is indicated by the size of the arrow thereof.

Herein, the lowering of the manufacturing level of the
process denotes that a reference linewidth in the process of
manufacturing the processor with actual silicon chips is
reduced. For example, the linewidth in the manufacturing
process is reduced as 1 pm—0.8 um—=0.6 um—0.35
um—0.18 pm—=90 pum—=65 nm—»45 nm—40 nm—35
nm—20 nm. This reduction in the linewidth is expressed by
“the lowering of the manufacturing level of the process”.

As the manufacturing level of the process is lowered, the
following basic effects can be obtained when the processors
manufactured in the same design.

First, as the linewidth is reduced, the moving distance of
electrons is reduced, so that the operating rate is increased.

Second, as the linewidth is reduced, the area of the
processor is reduced.

Third, as the area of the processor is reduced, the price of
the processor manufactured with silicon is lowered.

In general, if the manufacturing level of the processor is
lowered, the operating rate of the logic is proportionally
increased. However, the operating rate of the memory is
more slowly increased that the operating rate of the logic. As
a result, the operation rates of the fetch stage 110 and
memory stage 140 which are influenced by the instruction
cache and data cache configured by using memories become
relatively low. A multi-pipelined architecture processor is
implemented in order to solve a delay in memory rate in
such a processor.

FIG. 2 is a diagram illustrating a pipeline structure with
a multi-pipelined architecture.

FIG. 2 illustrates a method of solving a delay in memory
rate in an actual process.

In other words, in the multi-pipelined architecture, one
cycle of the fetch stage 210 is further divided into two cycles
or three cycles.

In addition, in the multi-pipelined architecture, the
memory stage 240 may be further divided into an ALU
pipeline, an MAC pipeline, an ROAD/STORE (Ld/St) pipe-
line, and the like.

As a similar concept of the multi-pipelined architecture,
there is an architecture where the fetch stage and the
memory stage are configured with multiple cycles.

FIG. 3 is a diagram illustrating a pipeline structure with
a multi-cycle architecture.

Referring to FIG. 3, each of a fetch stage 310 and a
memory stage 340 is changed from a one-cycle manner to a
two-cycle manner.

FIG. 5 is a diagram illustrating an instruction processing
scheme in a multi-pipelined architecture processor.

In the embodiment illustrated in FIG. 5, the fetch stage is
configured in a multiple pipeline manner. In other words, in
the multi-pipeline manner of the fetch stage, the fetch stage
in an area 510 is configured to be two fetch stages IF1 and
IF2. According to this configuration, the two fetch stages IF1
and IF2 can be simultaneously performed, so that there is an
advantage in that performance and efficiency become high.
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However, there is a disadvantage in that hardware logic for
control and parallel process is increased.

FIG. 6 is a diagram illustrating an instruction processing
scheme in a multi-cycle architecture processor.

In the multi-cycle manner of the fetch stage, the fetch
stage is configured with n cycles.

In the embodiment illustrated in FIG. 6, the fetch stage is
configured in a multi-cycle manner. In other words, it can be
seen that the fetch stage in an area 610 is configured with
two cycles.

According to the configuration of the multi-cycle archi-
tecture processor, there is an advantage in that hardware
logic is not almost increased. However, there is a disadvan-
tage in that performance, that is, rate is decreased n times.
Therefore, there is a need for another method to compensate
for the decrease in the performance.

FIG. 7 is a block diagram illustrating a structure of a
processor according to an embodiment of the present inven-
tion.

Referring to FIG. 7, a processor according to the embodi-
ment of the present invention is configured to include an
integer core 710, an instruction buffer 720, an instruction
cache 730, and an instruction bus interface unit 740.

The integer core 710 is a block which reads an instruction
and executes an operation corresponding to the instruction.
In the embodiment of the present invention, the integer core
710 transmits an iaddr (Instruction Address) to a lower block
in order to read the instruction and receives data correspond-
ing to the iaddr to execute the operation.

The instruction buffer 720 stores instruction data which
are requested by the integer core 710 using the iaddr and
transmits the instruction data in response to the request of
the integer core 710.

The instruction buffer 720 retains internal instruction data
by using a self-prefetching method. In an actual case, since
there is physical restriction to the size of the instruction
buffer 720, there is a limitation to retain the data requested
by the integer core 710 using the iaddr. Therefore, the
instruction buffer 720 continues to perform the prefetching
for filling the instruction buffer 720 with the instruction data
which are to be requested later based on the current iaddr of
the integer core 710. For example, during the prefetching,
the instruction buffer 720 is filled with 128x4-bit data.

The instruction cache 730 stores a portion of data of a
program memory.

In the embodiment of the present invention, the instruc-
tion cache 730 transmits the data of the instruction buffer
720, which are filled during the prefetching, to the instruc-
tion buffer 720.

Since there is also physical restriction on the size of the
instruction cache 730, only a portion of the instruction data
in the memory is stored in the instruction cache. In the case
where the instruction data of the area which does not exist
in the instruction cache 730 are requested, the memory is
accessed to read the instruction data, and the instruction
cache 730 is filled with the instruction data. For example, the
instruction cache 730 is filed with 128x4-bit data which are
read from the memory.

The instruction bus interface unit 740 is a block which
changes an internal interface into a bus interface 750 in order
to directly access the memory.

In the present invention, the instruction buffer 720 and the
instruction cache 730 are different in terms of size and
repose cycle. In other words, the instruction buffer 720
stores a smaller amount of the instruction data than the
instruction cache 730, and the instruction data of the integer
core 710 can be transmitted without delay. On the contrary,

10

15

20

25

30

35

40

45

50

55

60

65

6

the instruction cache 730 stores a larger amount of the
instruction data than the instruction buffer 720, and N cycles
are needed to output internal data of the instruction cache
730.

In the process with a multi-pipeline fetch structure and the
processor with a multi-cycle cache structure, the portion of
fetching data from a memory is configured with multiple
cycles. Therefore, the performance of the processor is
inversely proportional to the number of multiple cycles.

According to the present invention, in this case, in order
to improve the performance during the instruction fetching,
the instruction buffer 720 is added between the integer core
710 and the instruction cache 730.

FIG. 8 is a block diagram illustrating a structure of a
processor according to another embodiment of the present
invention. In the structure of the process according to the
embodiment illustrated in FIG. 8, the instruction cache 730
illustrated in FIG. 7 is not included.

Referring to FIG. 8, the processor according to another
embodiment of the present invention is configured to include
an integer core 710, an instruction buffer 720, and an
instruction bus interface unit 740.

The integer core 710 is a block which reads and processes
an instruction. In the embodiment of the present invention,
the integer core 710 transmits iaddr to a lower block in order
to read the instruction and receives data corresponding to the
iaddr to perform an operation.

The instruction buffer 720 stores instruction data which
are requested with the iaddr by the integer core 710 and
transmits the instruction data in response to the request of
the integer core 710.

The instruction buffer 720 retains internal instruction data
by using a self-prefetching method. In an actual case, since
there is physical restriction on the size of the instruction
buffer 720, there is a limitation in retaining the data
requested by the integer core 710 using the iaddr. Therefore,
the instruction buffer 720 continues to perform the prefetch-
ing for filling the instruction buffer 720 with the instruction
data which are to be requested later based on the current
iaddr of the integer core 710. For example, during the
prefetching, the instruction buffer 720 is filled with 128x4-
bit data.

The instruction bus interface unit 740 is a block which
changes an internal interface to a bus interface 750 in order
to directly access the memory.

FIG. 9 is a diagram illustrating prefetching of an instruc-
tion buffer according to an embodiment of the present
invention.

Referring to FIG. 9, a sliding window for the prefetching
of the instruction buffer 720 exists. The prefetching method
is a method of filling the instruction buffer 720 with data in
advance before the requesting of the integer core 710.

In the embodiment, the empty area in the instruction
buffer 720 is checked, and the prefetching is performed in
order to fill the empty area. If logic of simultaneously
checking all the areas is configured in a hardware manner,
the size of the logic becomes very large. Therefore, in the
present invention, the size of the areas which can be sequen-
tially accessed is designated with reference to the currently-
accessed area, and only the areas are checked. These areas
are called sliding windows.

In the present invention, the empty sliding windows in the
instruction buffer 720 are checked, and the prefetching is
performed to fill the empty sliding windows with data. If the
currently-accessed area is changed, the start and end points
of the sliding window are also changed.
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In the present invention, since the instruction buffer 720
is hardware of which the size is limited, a hashing method
is used to represent all the instruction data which are
requested by the integer core 710. In the embodiment of the
present invention, the most significant 20 bits of the iaddr
may be used as a tag, and the least significant bits of the
iaddr may be used as an index to search for the data in the
instruction buffer 720. The embodiment of the present
invention can be configured so that four words can be
managed as one tag.

FIG. 10 is a flowchart illustrating a method of controlling
an instruction buffer according to an embodiment of the
present invention.

Referring to FIG. 10, a processor checks whether or not
instruction access exists (Step S901).

If the instruction access exists, it is checked whether or
not the corresponding data exists in the instruction buffer
720 (Step S903).

If the corresponding data exists in the instruction buffer
720, the corresponding data are transmitted (Step S905). If
the corresponding data does not exist in the instruction
buffer 720 in Step S903, an instruction access address is
generated (Step S921). Next, a lower module is requested to
transmit the instruction data (Step S923).

If the instruction access does not exist in Step S901, it is
checked whether or not all sliding windows are valid (Step
S907). If all the sliding windows are valid, no operation is
performed (Step S909).

If all the sliding windows are not valid, a next address of
the sliding windows is generated (Step S911).

Next, it is checked whether or not the next address exists
in a branch predictor (Step S913). If the next address exists
in the branch predictor, the next address is changed into a
branch destination address (Step S915). Next, the lower
module is requested to transmit the data (Step S915).

If the next address does not exist in the branch predictor
in Step S913, the lower module is requested to transmit the
data (Step S919).

Hereinbefore, several exemplary embodiments of the
present invent are described, but the present invention is
analyzed in a limitative sense. It will be understood by the
ordinarily skilled in the art that various changes in form and
details may be made therein without departing from the
spirit and scope of the present invention as defined by the
appended claims.

What is claimed is:
1. A processor with a multi-pipeline fetch structure or a
multi-cycle cache structure, comprising:
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an integer core which reads instruction transmitted from
an instruction buffer, executes an operation correspond-
ing to the instruction, and transmits an instruction
address to the instruction buffer;

the instruction buffer which stores instruction data which

are requested by the integer core by using the instruc-
tion address and transmits the instruction data in
response to the request of the integer core; and

an instruction cache which stores a portion of data of a

program memory and transmit the data to the instruc-
tion buffer in response to the request of the instruction
buffer.

2. The processor according to claim 1, wherein the
processor employs a prefetching method of filling the
instruction buffer with data in advance before the requesting
of the integer core.

3. The processor according to claim 2, wherein the
processor checks an empty area of the instruction buffer and
uses a prefetching method to fill the empty area.

4. The processor according to claim 3, wherein, when
areas of the instruction buffer which can be sequentially
accessed with reference to a currently-accessed area are
defined by sliding windows, the processor may use the
prefetching method where the sliding windows are desig-
nated and the checking is performed.

5. A processor with a multi-pipeline fetch structure or a
multi-cycle cache structure, comprising:

an integer core which reads instruction transmitted from

an instruction buffer, executes an operation correspond-
ing to the instruction, and transmits an instruction
address to the instruction buffer; and

the instruction buffer which stores instruction data which

are requested by the integer core by using the instruc-
tion address and transmits the instruction data in
response to the request of the integer core.

6. The processor according to claim 5, wherein the
processor employs a prefetching method of filling the
instruction buffer with data in advance before the requesting
of the integer core.

7. The processor according to claim 6, wherein the
processor checks an empty area of the instruction buffer and
uses a prefetching method to fill the empty area.

8. The processor according to claim 7, wherein, when
areas of the instruction buffer which can be sequentially
accessed with reference to a currently-accessed area are
defined by sliding windows, the processor may use the
prefetching method where the sliding windows are desig-
nated and the checking is performed.
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